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Stationary dynamics approach to analytical approximations for polymer coexistence curves

S. M. Scheinhardt-Engels,* F. A. M. Leermakers, and G. J. Fleer
Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Neth

~Received 15 August 2003; published 27 February 2004!

Phase separation in polymer blends is an important process. However, the compositions of the coexisting
phases can only be predicted by numerical methods. We provide simple analytical expressions which serve as
good approximations for the compositions after phase separation of binary homopolymer blends. These ap-
proximations are obtained by a stationary dynamics approach: we calculate the compositions of two polymer
mixtures such that the stationary diffusion between these distinguishable mixtures vanishes. For the diffusion
equations we employ composition-dependent diffusion coefficients, as derived according to the slow- and
fast-mode theory from the Flory-Huggins free energy. The analytical results are in good agreement with exact
~numerically calculated! binodal compositions. Our coexistence curves are more accurate than some conven-
tional approximations. Another advantage of the stationary dynamics approach is that it is not only applicable
to binary polymer blends or polymer solutions, but also to symmetrical multicomponent blends. The same
diffusion coefficients may be used to obtain the exact spinodal compositions in multicomponent systems.

DOI: 10.1103/PhysRevE.69.021808 PACS number~s!: 36.20.2r, 64.10.1h, 64.70.Ja
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I. INTRODUCTION

Phase equilibria in polymer solutions and polymer blen
are of great interest since in many instances different ma
molecular species are combined to obtain materials with
vorable properties. The implications of the phase behav
such as the stability of polymer solutions and blends, is
portant not only in manufacturing and processing of mat
als, but also in their applications.

The great interest in the phase diagrams has led to a
riety of simulation methods which were exclusively dev
oped for the determination of coexistence curves. De Pa
et al.present a clear overview of the simulation methods@1#.
One easy and robust way to obtain the compositions of
existing phases is by Panagiotopoulos’ Gibbs ensem
simulations@2,3#. This method needsn simulation boxes ifn
phases may coexist at the imposed temperature and ov
composition. The Monte Carlo movements in the simulat
allow subsequently the displacement of particles (NVT
simulations!, adjustment of the volumes (NPT simulations!,
and of the number of particles (mVT simulations! in each of
thesen boxes. The boxes are in contact due to the condit
that particles and volume are exchanged, so thatN, V, andT
are constant for the total of all boxes. Equilibrium is obtain
when the pressure and chemical potentials are the same
boxes. The computation time may be decreased by perfo
ing the simulation on a lattice, but then the volume e
changes need some extra attention@4,5#. The strength of the
Gibbs ensemble method lies in the absence of interfa
only bulk phases are simulated. One single simulation
containing two coexisting phases plus the interface in
tween would soon suffer from finite-size effects, especia
near the critical point. However, problems arise in the Gib
ensemble method when it is applied to macromolecu
since particle exchanges become extremely difficult. The
ceptance probability of these exchanges may increas
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chains are inserted by a growth process, known as
configurational-bias method@6,7#. Other approaches to cir
cumvent the insertion problem were proposed by Escob
@8# and by Brennan and Madden@9#. The Gibbs ensemble
simulation result is a good starting point for the Gibb
Duhem integration scheme@10–12#, which constitutes an ef-
ficient search for coexisting phases.

There are some attempts to find the coexistence curve
simulations in one cell only. The configurational-bia
vaporization method@13,14# and the adhesive-wall metho
@15# simulate the coexisting phases with their interface. T
histogram reweighing method@16,17# is a powerful tool to
find the coexistence curves by a limited number of simu
tions in which the interfaces need not be present.

This large number of attempts to find coexistence cur
in polymer fluids indicates the importance of the issue. O
general feature of such simulation methods is that one ne
to start with a good estimate of the compositions of the
existent phases. Such an initial guess might be obtained f
a series of~time-consuming! trial simulations~e.g., by virtual
Gibbs ensemble simulations@18#! or from simple analytical
expressions. Some analytical expressions are available in
literature. We review them in the following section. In Se
III we explain our ‘‘stationary dynamics approach’’ to obta
analytical approximations for coexistence curves. In this
proach, we look for the compositions of two mixtures
which the stationary flux between these mixtures vanish
We show that this approach in principle yields the exact b
odal compositions when the equations are solved num
cally. However, when the equations are solved analytica
only an approximation is obtained due to the analytica
inaccessible discontinuity in the diffusion profiles. We app
this approach to binary and symmetric multicompone
blends. Our analytical coexistence curves from the station
dynamics approach are compared with other approximat
and with exact results in Sec. IV. It is found that our a
proach, which is applicable for a wide range of polym
blends, yields better approximations than those availa
from literature. Spinodal curves are strongly related to
©2004 The American Physical Society08-1
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coexistence curves. Sec. V shows that the exact spinoda
binary and multicomponent polymer blends may be obtai
from our flux expressions. Sec. VI summarizes our findin

II. ANALYTICAL BINODAL COMPOSITIONS

In this section, we focus on binary blends of homopo
mersA and B. The approximations that are available fro
the literature apply the Flory-Huggins theory to find an e
pression for the chemical potential. This theory is simple a
sometimes of limited use for experimental purposes, but
still widely applied to understand phase behavior. It is us
as a reference for newly developed models and it has se
as the basis of new approaches@19–23#. Our stationary dy-
namics approach is not limited to the use of Flory-Hugg
theory. We use this only to compare with the approximatio
available in the literature.

The free energy of mixing per lattice site for incompres
ible homopolymer mixtures in the Flory-Huggins model is

f

kBT
5

g

kBT
1const5(

i

f i

Ni
ln f i1

1

2 (
i , j

f ix i j f j . ~1!

Here, f i and Ni denote the volume fraction and the cha
length~that is, the number of constituent segments! of poly-
mer i, respectively, and the parametersx i j quantify the re-
pulsive (x.0) or attractive (x,0) net interactions betwee
segmentsi andj. Solvents are simply described as molecu
with N51. Due to the assumption of incompressibility, t
Helmholtz ~f! and Gibbs~g! free energies differ only by a
constant.

We are looking for the binodal compositions, i.e., the v
ume fractions of both components in the two phases (a and
b) that coexist at thermal equilibrium, for a given set ofx ’s.
These compositions will be denoted, for polymerA, by fA

a

andfA
b . Thermal equilibrium implies equal chemical pote

tials in both phases:mA
a5mA

b andmB
a5mB

b . These chemica
potentials follow from the standard procedure:mA
5]G/]nA , wherenA is the number ofA molecules. Using
fA5nANA /(nANA1nBNB) and G5(nANA1nBNB)g it is
then easy to obtainmA /NA5g1(12fA)(]g/]fA) so that

mA

kBT
5 ln fA1S 12

NA

NB
DfB1NAxfB

2 , ~2!

where the pure phaseA was taken as the reference point. T
expression formB is obtained by interchanging the subscrip
A and B. Obviously, in a binary mixturefB512fA . One
relation betweenfA

a andfA
b follows from mA

a5mA
b :

ln
fA

a

fA
b
1S 12

NA

NB
D ~fA

b2fA
a!1NAx@fA

a~fA
a22!

2fA
b~fA

b22!#50 ~3!

and a second relation, obtained frommB
a5mB

b , is found by
interchanging the subscriptsA and B in Eq. ~3! and substi-
tuting fB512fA . A numerical method is needed to fin
fA

a and fA
b from these two relations. Even for the simple
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case of symmetrical polymer blends~i.e., NA5NB5N),
which includes mixtures of monomers (N51), the binodal
compositions are not analytically accessible. In this sy
metrical casefA

b512fA
a and Eq.~3! reduces to

xN5
1

2fA
a21

lnS fA
a

12fA
aD . ~4!

Numerical methods need good initial guesses to avoid
vergence@24# for which analytical approximations are ver
helpful. We review three analytical approximations for t
binodal compositions taken from the literature. Only one
these is generally applicable, the others are either for s
metrical blends (NA5NB5N) or for polymer solutions
(NB51) only. In the following discussion we need som
extra quantities which may easily be derived from the Flo
Huggins free energy expression for a binary system. Th
are the spinodal compositionsfA

spin512fB
spin that follow

from the spinodal condition (]2G/]f250) and the critical
composition and critical interaction parameter which a
given by the critical condition (]2G/]fA

25]3G/]fA
350):

fA
spin5k6

b

A2
, ~5!

fA
crit5kcrit , ~6!

xcrit5
1

2 S 1

ANA

1
1

ANB
D 2

. ~7!

Here, we introduced parametersk andb defined by

k5
1

2
1

1

4x S 1

NA
2

1

NB
D ~8!

b252k22
1

xNA
. ~9!

The parameterkcrit is the value of parameterk after substitu-
tion of x5xcrit into Eq. ~8!:

kcrit5
ANB

ANA1ANB

. ~10!

A. Approximation for symmetrical blends

We first consider an analytical approximation for binod
compositions in blends that consist of two homopolym
with equal chain lengths (NA5NB5N). The compositions
are calculated by minimization of a Ginzburg-Landau exp
sion for the Flory-Huggins free energy@25#. The minimiza-
tion is preceded by expanding the entropic contribution
terms of the order parameterC5f2fcrit, which must be
close to zero. This means that the system should be no
from its critical point. The minimization itself is carried ou
according to variational calculus. The result is therefore
coexistence curve according to a free energy functional
8-2
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merely serves as an upper bound for the real free ene
Here we are only interested in the approximation for
binodal compositions,

fVdW5
1

2
6A3

8
~xN22!, ~11!

but the procedure provides the complete composition pro
between two liquid phases. It is known as the van der Wa
theory of liquid/liquid interfaces.

B. Approximation for polymer solutions

For a polymerA in a solventB we haveNA5N andNB
51. The analytical approximation considered here provi
only the binodal composition of the polymer-rich phase. T
key element of this approximation is the assumption that
polymer-rich phaseb coexists with a very dilute phasea
which is essentially pure solvent. In other words,mB is as-
sumed to be equal to zero in both phases so that the com
sition of the concentrated phase must obey

mB
b

kBT
5

mB
a

kBT
5 ln~12fA

b!1S 12
1

NDfA
b1x~fA

b!250.

~12!

This assumption results in an underestimation of the poly
content in the concentrated phase, in particular for small
ues of x and for chains that are relatively short. This c
immediately be seen by inspection ofmB as a function offA
@9#. An analytical approximation for Eq.~12! in the long-
chain limit is obtained by neglecting the term 1/N and ex-
panding the logarithm, assuming smallfA even in the
polymer-rich phase, which is valid forN→` and small (x
2xcrit)5(x21/2). If the expansion is truncated after th
term proportional to (fA

b)3, we obtain for the binodal com
position of the polymer-rich phase:

fA
sol(i )53~x2 1

2 !. ~13!

Truncation after the next term still results in an analytic
expression:

fA
sol(i i )5

2

3
@211A119~x2 1

2 !#. ~14!

Due to the truncation, these approximations are overesti
tions of the underestimating Eq.~12!. The result of this error
compensation will be shown in Sec. IV. The assumption t
a concentrated polymer solutions coexists with pure solv
forms the basis for an osmotic Gibbs ensemble simula
technique that circumvents the necessity for insertion
deletion of macromolecules@9#.

C. Approximation for all binary mixtures

Sanchez@26# has derived an approximation for Flory
Huggins coexistence curves that is valid both for symme
cal and asymmetrical binary blends as well as for polym
solutions. His derivation is based upon a Landau-type exp
02180
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sion of the free energy around the critical interaction para
eterxcrit and the critical compositionfA

crit . He assumed tha
close to the critical point the binodal compositions are eq
distant from the critical composition:fA

a2fA
crit5fA

b2fA
crit .

Combining the Landau expansion with this assumption,
equilibrium condition (mA

a5mA
b), and the spinodal condition

(]2G/]f250) results in a simple relationship between t
coexistence curve and the spinodal, which is known as
root-three rule:

DfA
bin

DfA
spin

5A3, ~15!

where DfA
bin5fA

a/b2fA
crit and DfA

spin5fA
spin1/spin22fA

crit .
Here,fA

a/b means eitherfA
a or fA

b . Substituting Eqs.~5! and
~6! into Eq. ~15! yields for the root-three approximation fo
binodal compositions~denoted byfA

(A3)):

fA
(A3)5kcrit1A3~k2kcrit!6 1

2 bA6. ~16!

III. STATIONARY DYNAMICS APPROXIMATION

Our approach to find an approximation for the coexisten
curve for given x is completely different from the ap
proaches in Sec. II. We consider two polymer mixtures t
differ in their compositions and that are brought into cont
as shown in Fig. 1. It is assumed that these mixtures
infinitely large and ideally stirred, so that their compositio
do not change in time. Generally, a diffusion flux will occ
between these mixtures, driven by the concentration gr
ents, or, more precisely, by the chemical potential gradie
This is the key idea of our approach:if the compositions of
the mixtures are chosen such that the mixtures represent
existing phases, there is no diffusion flux. This statement can
not be inverted: the diffusion flux may also be absent
other compositions than that of coexisting phases, the tri
case being equal compositions for both mixtures. In the
tionary situation, there is no accumulation of material with
the contact zone between the two mixtures, and the fluxes
constant in time. Thus we can assign one value to the flu
each polymer in the stationary state. Our approach is to
those compositions that result in vanishing stationary flu

FIG. 1. Schematic picture of the system that is used to ob
approximations for binodal compositions: two ideally stirred m
tures in contact and a composition profile in between. There is
flux if the mixtures are coexistent at equilibrium.
8-3
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for all polymers. A similar idea forms the basis of a nume
cal algorithm to obtain phase diagrams@27#. The analytical
approximations for binodal compositions that we find fro
this stationary dynamics approach~SDA! will be denoted by
fA

SDA.
We first need to derive expressions for the segment flu

~Sec. III A!, where we consider only one-dimensional diff
sion perpendicular to the interface between the two mixtu
We will present the equations for stationary fluxes accord
to two different diffusion mechanisms. The assumptio
about the diffusion mechanism are critical; they do not ha
an effect on the exact numerical results, but they determ
whether it is possible to obtain an approximation for t
coexistence curve.

The flux can be written in terms of Onsager coefficie
and driving forces so that we generally have

J52 f ~f!“m⇔Jdz52 f ~f!dm. ~17!

The function f (f) depends on the diffusion mechanism
will be seen in Sec. III B. In the stationary state, the flux is
constant so that integration of Eq.~17! from z5z1 to z5z2
yields for vanishing stationary fluxes

@z22z1#Jstat52E
z1

z2
f ~f!dm50. ~18!

At least one of the solutions of this equation yields the ex
binodal compositions, independent of the functionf (f).
This is because*m5a

m5a f (f)dm always equals zero; one of th
solutions of Eq.~18! is found for m(z1)5m(z2), which is
the requirement for binodal compositions atz1 andz2. How-
ever, an analytical approach requires the fluxes to be rew
ten in terms of diffusion coefficientsD̃:

@z22z1#Jstat52E
z1

z2
D̃~f!df52E

z1

z2
f ~f!

]m

]f
df50.

~19!

Now the functionf (f) determines~together with the chosen
expression for the chemical potential! whether this equation
can be solved analytically or not, and if it can be solv
analytically, it determines the accuracy of the approximati
If the function f (f) is a constant, Eq.~19! requires a numeri-
cal calculation. Iff (f) is not a constant, analytical solution
may be possible, but numerical calculations still yield t
exact binodals, since Eq.~19! is equivalent to Eq.~18!. The
discrepancy between the numerical and analytical solut
of Eq. ~19! originates from the shape of the volume fracti
profiles betweenz1 and z2; numerical profiles show a dis
continuity while the analytical profiles have a loop. This
shown in Fig. 2 for a binary system. The numerical profi
are calculated by the mean field stationary dynamics met
@28# and the analytical profiles by solving Eq.~19! with the
help of a simple form for the diffusion coefficient, present
later in Eq.~27!. The analytical computation yields the in
verse of the volume fraction profilez(fA) instead offA(z).
Since analytical solutions will never yield the discontinuo
jumps, we only obtain an approximation for the exact b
02180
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odals by analytically solving Eq.~19!. The discontinuous
jumps are a consequence of our simple definition for
segmental chemical potential, necessary for the analytica
proach; this definition yields the correct value in the bu
phases but implies a simplification in the interfacial region
more sophisticated expression of this potential, presente
Ref. @28#, yields continuous profiles without any loop.

We will see in Sec. III B that Eqs.~18! or ~19! is a suffi-
cient condition for vanishing stationary fluxes between po
tionsz1 andz2, but only a necessary condition for coexistin
phases at these positions. We will need an additional cr
rion for coexistence.

A. Flux expressions

The expressions for the fluxes between polymer mixtu
can be derived along the lines of the well-known fast-mo
@29,30# and slow-mode@31# models. Experimentalists hav
tried to verify the predictions of each model, but there is
definite preference for any of them: some experiments
more consistent with the slow-mode model@32,33#, others
with the fast-mode model@34,35#. For a more detailed dis
cussion, see Ref.@28#.

The diffusion models were originally developed for b
nary blends, but may easily be generalized to multicom
nent blends as shown in Ref.@28#. Here, we only present the
results. In order to describe the diffusion on the scale
segments, thesegmentchemical potentialsm* are needed.
They are simply calculated by dividing the chemical pote
tial of a chainm by the number of chain segmentsN. This is
an approximation since it is assumed that all segments of
chain have the same environment, although in the interfa
region the mixture is inhomogeneous on the length scale
the chain. In both diffusion models the segment fluxes sat
the relation

(
i

Ji50, ~20!

where the summation is taken over all segment typesi. Ac-

FIG. 2. Stationary volume fraction profiles between two sta
mixtures calculated numerically~thin curve! and analytically~thick
curve!. NA530, NB510, x50.14.
8-4
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cording to the slow-mode model, the system is incompre
ible and it is assumed that segmentsA diffuse by exchanging
their positions with the positions of segments of ty
B,C,D, . . . . Thefluxes are then given by

JA
s 52LA“mA* 1

LA

(
i

L i

(
j

L j“m j* . ~21!

The fast-mode model assumes that there is an additional
of segments due to drift flow. This results in fluxes that a
expressed by

JA
f 52LA“mA* 1fA(

j
L j“m j* . ~22!

The difference between these two equations is thus a di
ent prefactor of(L“m: the volume fraction in Eq.~22!, and
an ‘‘Onsager fraction’’ in Eq.~21!. In the above equation
LA is an Onsager coefficient, which can be expressed
terms of the mobility coefficientB̃A of segmentsA:

LA~z!5B̃AfA~z!. ~23!

The mobility coefficients may reflect the influence of e
tanglements on the dynamics of chains. This can be
counted for by considering the mobility coefficients to be
function of the monomer concentrations and chain lengt
@29,28#. However, in this study we consider the mobility c
efficients B̃ as being constant. Since we are interested
equilibrium properties of the blends, the choice of mobil
coefficients should not be critical. In Sec. III C we explo
the influence of segment mobilities on the approximatio
for binodal compositions. Note that the slow-mode and fa
mode expressions become identical if all segments have
same mobilityB̃A5B̃B5•••5B̃.

In the following we apply the stationary dynamics a
proach to binary and multicomponent blends. We simply
the Flory-Huggins expression for the segment chemical
tential, since it allows direct comparison with the approxim
tions discussed in Sec. II. In principle, any expression for
segment chemical potential could be chosen, as long as
~19! can be solved analytically.

B. Application to binary blends, B̃AÄB̃B

We first apply the stationary dynamics approach to bin
blends. For binary blends withB̃A5B̃B5B̃ we have accord-
ing to Eqs.~21! and ~22!

JA
s 5JA

f 52B̃fAfB“~mA* 2mB* !. ~24!

Thus a vanishing stationary flux corresponds to
02180
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JA
stat,s5JA

stat,f52
B̃

@z22z1#
E

z1

z2
fAfBd~mA* 2mB* !

52
B̃

@z22z1#
E

z1

z2
fAdmA* 50. ~25!

For the third equality we used the Gibbs-Duhem equat
(( if idm i50) and fA1fB51. We see that the flux van
ishes if mA* (z1)2mB* (z1)5mA* (z2)2mB* (z2), or in other
words if DmA* 5DmB* , whereDm* 5m* (z2)2m* (z1). This
occurs~i! if mixtures 1 and 2 are identical,~ii ! if they are
coexistent or,~iii ! if the driving force for diffusion of seg-
mentsA is nonzero and the same~equal and in the same
direction! as for segmentsB. In the third scenario none of th
segments will be able to diffuse due to the incompressibi
constraint@Eq. ~20!#. This scenario can only occur if at lea
one of the two mixtures is not stable~i.e., inside the binodal!,
since different stable mixtures always have different che
cal potentials if the mixtures are noncoexistent.

Comparing Eq.~25! with Eq. ~18! we find that in this case
the functionf (f) in Eq. ~18! is given by

f ~fA!5B̃fA , ~26!

and by using Eq.~19! and the Flory-Huggins chemical po
tential we find forD̃(f):

D̃~fA!

kBT
5 f ~fA!

]

]fA

mA*

kBT
5B̃fAfBS 1

fANA
1

1

fBNB
22x D .

~27!

The functionf (fA) is linear infA , which allows an analyti-
cal expression for the stationary flux according toJ
52*D̃dfA :

JA
stat5C̃~fA12fA2!@fA1

2 1fA1fA21fA2
2 23k~fA11fA2!

13k22 3
2 b2#, ~28!

whereC̃5 2
3 B̃xkBT/@z22z1#. There may exist many combi

nations offA1 and fA2 for which the stationary flux van-
ishes. One of these combinations is the trivial case of id
tical blends (fA15fA2), another combination must be th
coexisting blends (fA15fA

a andfA25fA
b or vice versa!, the

remaining combinations must have eitherfA
a,fA1,fA

b or
fA

a,fA1,fA
b or both.

To find the best approximation for coexisting phases az1
andz2, we need an extra criterion in addition to the requir
ment

fA1
2 1fA1fA21fA2

2 23k~fA11fA2!13k22 3
2 b250,

~29!

in particular forNAÞNB . Therefore it is convenient to in
spect the general plot of the stationary flux vs the compo
tion of mixture 2 for givenfA1 ~see Fig. 3!. If both mixtures
are stable, we haveJA

stat.0 ~diffusion to the right! for fA2

,fA1 and JA
stat,0 ~diffusion to the left! for fA2.fA1. If
8-5
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one of the mixtures is unstable~inside the binodal curve! the
stationary flux may be negative forfA2,fA1 and positive
for fA2.fA1 depending on the chemical potentials of
components. Differentiating Eq.~28! with respect tofA2 at
constantfA1 gives ]JA

stat/]fA250 when fA25k6b/A2.
Comparing this with Eq.~5!, we see that the minimum an
maximum in Fig. 3 correspond to the spinodal composit
of mixture 2. Also,]2JA

stat/]fA2
2 50 for fA25k; the inflec-

tion point lies halfway the two local extrema. Hence, t
position of the two extrema and the inflection point in b
tween do not depend onfA1. In fact, upon changingfA1 the
curves translate vertically, as follows from Eq.~28!.

Depending on the choice forfA1 the curve has either one
two, or three zero points. These points are indicated by
numbers 1, 2, and 3 forfA150.22. Point 3 corresponds t
fA25fA1, points 1 and 2 can be found by solving the qu
dratic equation~29!. If mixture 1 has a binodal compositio
(fA15fA

a) the three zero points arefA25fA
a ~point 3!,

fA25fA
b ~point 1!, andfA

b,fA2,fA
a ~point 2!. This zero

point 2 gives the necessary condition for coexisting phase
addition to Eq. ~29!. It must represent the situation th
DmA* 5DmB* Þ0. The additional condition is thatfA2 must
have a certain given value~that of zero point 2!, so that Eq.
~29! is obeyed only if mixture 1 has a binodal compositio
We look for the appropriate value of zero point 2 in Se
III B 2 after exploring the approximation for symmetric
systems in the following section.

1. B̃AÄB̃B and NAÄNB

In a symmetrical binary blend, both components have
same chain length. For such systems, we do not explic
need the plot ofJA

stat vs fA2: the extra criterion for coexist
ence is simplyfA

b5fB
a512fA

a . Substitution offA251
2fA1 and NA5NB5N into Eq. ~29! yields the analytical
approximation for binodal compositions in symmetrical b
nary blends in whichB̃A5B̃B :

FIG. 3. Analytically calculated stationary flux as function of th
composition of mixture 2 for different compositions of mixture 1,
indicated by the value offA1 . NA5100, NB51, x50.63.
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fA
SDA5k6

1

2
bA65

1

2
6A3xN26

4xN
. ~30!

For symmetrical blendsk5kcrit5
1
2 , so that for these blend

our approximation is identical to the root-three rule appro
mation @Eq. ~16!#.

Although we did not need the plot ofJA
stat vs fA2 for the

additional criterion, we can of course still relate this plot
fA

SDA. The inflection point ofJA
stat(fA2) for symmetrical

blends does not only lie exactly halfway the spinodal co
positions, but also halfway the binodal compositions, sin
ufA

a2fA
spin 1u5ufA

b2fA
spin 2u. In other words for symmetrica

systems the zero point 2 in Fig. 3 is also the inflection po
Thus for symmetrical blends the stationary flux vanishes
mixture 1 has a binodal composition, and mixture 2 has
ther the same composition~point 3!, or the coexisting com-
position ~point 1!, or the composition of the inflection poin
(fA25k, point 2!. Hence, instead of selectingfA251
2fA1 as the additional criterion, we could have select
fA25k. Indeed, substitution offA25k5kcrit5

1
2 into Eq.

~29! yields the same approximation for the binodal comp
sitions as presented by Eq.~30!.

2. B̃AÄB̃B and NAÅNB

We do not have a simple relation betweenfA
a andfA

b for
NAÞNB which could be used as the necessary criterion
addition to Eq.~29!. We propose two alternative additiona
criteria for vanishing fluxes if mixture 1 has a binodal com
position: fA25k or fA25kcrit . For NA5NB these criteria
are identical and they yield the approximation as presente
Eq. ~30!. Both criteria obey the requirement thatJA

stat(fA2)
has three intersections with the lineJA

stat50 if mixture 1 has
a binodal composition, since bothk andkcrit are somewhere
between the two spinodal compositions which correspond
the local extrema of the curve.

The first choice for the additional criterion (fA25k) is
related to the inflection point ofJA

stat(fA2). By taking this
criterion, we assume that we must vertically translate
curveJA

stat(fA2) until the inflection point is also a zero poin
of JA

stat. The other zero points are then supposed to be
binodal compositions.

The alternative choice for the additional criterion (fA2

5kcrit5fA
crit) is related to the observation in Eq.~25! that the

stationary flux vanishes ifDmA* 5DmB* . By taking this cri-
terion we assume that both components in a mixture wit
binodal composition feel the same driving force for diffusio
when the other mixture has a critical composition. This
equivalent to the assumption that the chemical potential
ference between the two componentsmA* 2mB* is equal in the
binodal and the critical compositions.

We also based the selection of these two criteria on
merical calculations of the stationary flux. By use of t
mean field stationary dynamics method@28# the flux can be
calculated exactly according to Eq.~18!. In these numerical
calculations~also based upon the Flory-Huggins free ener
functional!, mixture 1 was kept at the binodal compositio
fA

a . We varied the composition of mixture 2 betweenfA2
8-6
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STATIONARY DYNAMICS APPROACH TO ANALYTICAL . . . PHYSICAL REVIEW E 69, 021808 ~2004!
5kcrit andfA25k. Figure 4 presents the results for vario
systems withNA.NB and B̃A5B̃B . Each curve is in fact
part of a curve as presented in Fig. 3, viz. the part close
point 2. The two main intersections with the horizontal a
would occur forfA25fA

a and fA25fA
b . Indeed, the third

intersection of the stationary flux with the horizontal ax
occurs forkcrit,fA2,k.

To select the best of our two additional criteria, we o
serve that the first (fA25k) yields the same result as ob
tained in Eq.~30!: fA

SDA5k6 1
2 bA6. A weak aspect of this

criterion is that the resulting binodal compositions are b
equally far from the spinodal compositions, which is not tr
for real binodal compositions. We therefore select the al
native (fA25kcrit) as the necessary condition for a binod
composition of the mixture at the right hand side. Subst
tion of fA25kcrit into Eq. ~29! yields the stationary dynam
ics approximation for binodal compositions in binary blen
with NAÞNB and B̃A5B̃B :

fA
SDA5 1

2 @3k2kcrit6A6b223~k2kcrit!
2#. ~31!

We have compared this approximation with the approxim
tion obtained fromfA25k in plots similar to those to follow
in Sec. IV. Indeed,fA25kcrit yields a better approximation
than fA25k although the numerically calculated flux ha
zero point 2 closer tok than tokcrit .

C. Application to binary blends, B̃AÅB̃B

The segment mobilities enter the expressions for the
tionary flux via the functionf (f), and may thereby deter
mine whether an analytical prediction of the binodal comp
sitions is possible or not.

FIG. 4. The exact stationary flux between two mixtures for fo
different systems. In all systems, one mixture (fA1) has a binodal
composition. The compositionfA2 of the other mixture increase
from kcrit to k. For the four combinations ofNA , NB , andx given
in the figure ~from left to right! kcrit55.4631022, 9.0931022,
9.0931022, 0.414 andk57.0431022, 0.125, 0.166, 0.432. The
exact stationary flux always vanishes for some value offA2 in
between these limits.
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1. Slow-mode diffusion mechanism

From Eq.~21! we find for the slow-mode flux

@z22z1#JA
stat,s52B̃AB̃BE

z1

z2 fAfB

B̃AfA1B̃BfB

d~mA* 2mB* !.

~32!

The functionf (fA) is found by applying the Gibbs-Duhem
equation to Eq.~32!:

f ~fA!5B̃AB̃B

fA

fA~B̃A2B̃B!1B̃B

. ~33!

This function does not allow the analytical solution ofJstat

52*D̃df50, in contrast to the functionf (f) in Eq. ~26!,
which is linear infA and follows from Eq.~33! by substi-
tuting B̃A5B̃B .

If segmentsB are almost immobile compared to segmen
A, i.e., in the limit of B̃A /B̃B→`, we obtain f (fA)→B̃B .
The diffusion may thus be described by the diffusion of on
one~the slowest! component. Density gradients are immed
ately relaxed by the other component. Sincef (fA) is a con-
stant,Jstat52*D̃d f would again require a numerical calcu
lation. In the limit of B̃B /B̃A→` it is found that f (fB)
→B̃A .

2. Fast-mode diffusion mechanism

The fast-mode stationary flux for binary systems is giv
by

@z22z1#JA
stat,f52B̃AE

z1

z2
fAfBdmA* 1B̃BE

z1

z2
fAfBdmB* ,

~34!

so that we find forf (fA)

f ~fA!5B̃AfA1~B̃B2B̃A!fA
2 . ~35!

In combination with the Flory-Huggins potentials, this fun
tion only provides an analytical solution forJstat52*D̃df
50 if NA5NB .

D. Application to symmetrical multicomponent blends

We now consider symmetrical systems containingK com-
ponents. The symmetry in these systems arises from req
ments on chain lengths and interaction parameters:Ni

5N; i and x i j 5x; i , j Þ i . Moreover, we assumeB̃i

5B̃; i . At the corners of theK-phase region the volume
fractions of (K21) components are equal tofco, and one
component has volume fraction 12(K21)fco. It is our aim
to find fco as function ofxN. The exact solution is numeri
cally available from@36#:

1

12Kfco
lnF 1

fco
2~K21!G5xN. ~36!

r
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For our approach we write the flux by use of either E
~21! or ~22! and the Gibbs-Duhem equation as

JA52B̃fA“mA* 52(
i

f ~fA!S ]mA*

]f i
D

f j Þ i ,n

“f i .

~37!

In analogy to the approach for binary blends, we find for
mutual diffusion coefficients D̃Ai

(K) , defined by JA5

2( i D̃Ai
(K)

“f i :

D̃Ai
(K)

B̃kBT
5fAf ix2fAfKx1~dAK2dAi!S fAx2

1

ND .

~38!

The Kronecker deltadAB equals unity forA5B and is zero
otherwise. The superscript~K! indicates thatfK is written as
12( iÞKf i , which is necessary in the calculation of the to
differential in Eq.~37!.

We assume that we should always find the same com
sitions for the coexisting phases independent on the pro
of componentsB,C, . . . ,K21 at the interface betwee
these phases. In other words, we substitute“f i50 for all
iÞA,K into Eq. ~37! so thatJA52D̃AA

(K)
“fA . We need to

calculatefco for which *z1

z2D̃AA
(K)dfA50. After the integra-

tion we substitute fA15fK25fco, fA25fK1512(K
21)fco and f i15f i25fco; iÞA,K. Again @as for the bi-
nary systems, Eq.~28!# the result is a cubic equation infco.
One root of this polynomial is known: the flux should at lea
vanish if all components have the same volume fractio
thusfco51/K. The two remaining roots are then found to

fco5
1

2K2 H 62K6A3K2S 32
8

xND112~32K !J .

~39!

Only one of these two roots is a valid approximation@unless
K52 for which fco reduces to Eq.~30!#. Since theK-phase
region increases withxN, fco must decrease withxN. We
must therefore use the minus sign in Eq.~39!.

We can also find approximations for the compositions
the corners of (K21)-phase regions~for K.2). At these
corners, one minority component has volume fractionfm,
(K22) components have volume fractionsfco, and the vol-
ume fraction of the last component is 12fm2(K22)fco.
We want to obtainfco as a function offm and xN. The
exact solution can be calculated numerically from@36#

1

12fm2~K21!fco
lnF12fm

fco
2~K22!G5xN. ~40!

Taking the integral of the mutual diffusion coefficient an
substituting two corner compositions into the result yield
cubic equation infco. One root is given byfco5(1
2fm)/(K21). The others are
02180
.

e

l

o-
es

t
s,

t

a

fco5
fm

12K
1

1

2~K21!2 H 72K

6A24~12K !fm1~72K !218~K21!2S 12
3

xND J .

~41!

This reduces to Eq.~39! for fm5fco.

IV. RESULTS

The performance of our approximations for the binod
compositions can easily be evaluated by comparing th
with the numerically calculated binodal and with other a
proximations. In this section, we only consider our appro
mations for systems with equal segment mobilities for
components, so that the fast- and slow-mode models
identical.

A. Symmetric binary blends

In Fig. 5 we have plotted three binodals~coexistence
curves!. The use of the variablexN allows to cover all pos-
sible symmetrical binary systems at once. Curve 1 is
exact binodal, curve 2 is our approximation@Eq. ~30!#, which
in this case equals the root-three rule approximation,
curve 3 is the approximation obtained by the van der Wa
theory of fluid interfaces@Eq. ~11!#. It is seen that all ap-
proximations perform well for systems not too far from the
critical point (xN52) and that our approximation~or the
root-three rule! is significantly more accurate than van d
Waals’ approximation for largerxN.

FIG. 5. Comparison of exact and approximated coexiste
curves for binary homopolymer systems withNA5NB5N. Curve 1
is the exact binodal@Eq. ~4!#, curve 2 is our analytical approxima
tion @Eq. ~30!#, which in this case equals the root-three rule appro
mation @Eq. ~16!#, curve 3 is the analytical van der Waals approx
mation @Eq. ~11!#.
8-8
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FIG. 6. Comparison of our approximation, Eq.~31!, ~thick solid curves! with the exact binodal~dots!, the root-three rule of Eq.~16!
~dashed curves!, and the solution approximations of Eqs.~13! and ~14! ~dotted and thin solid curves, respectively!.
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B. Asymmetrical binary blends

Figures 6~a!–6~d! illustrate the performance of our ap
proximation for some typical examples of asymmetrical
nary blends. The dots in these figures always represen
exact binodals, the solid curves correspond to our appr
mation given by Eq.~31!, and the dashed curves to the roo
three rule. In Fig. 6~a! the chain lengths do not differ to
much, and our approximation almost coincides with the ro
three result. Moreover, the accuracy of our approximation
comparable to that for symmetrical systems. With increas
NA /NB the discrepancy between our approximation and
root-three result increases, in particular for the branch of
coexistence curve that corresponds to the phase that is
tively rich in the longer chains. Our approximation is mo
accurate for this branch. For the other branch~dilute in the
longer chains!, the root-three rule is slightly more accura
than our approximation, but the difference is very sm
Both approximations for the diluted branch fail for highx,
since they predict negative volume fractions.

We can also compare our approximation with the appro
mations for polymer solutions@Eqs.~13! and ~14!#. In Figs.
6~c! and 6~d! (NB51), where the polymer in solution ha
02180
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chain lengths 100 and 1000, respectively, we see that
approximation is much more accurate thanfA

sol(i ) andfA
sol(i i )

~dotted lines!. The accuracies offA
sol(i ) and fA

sol(i i ) increase
with NA . We may substituteNA→` into Eqs.~12!–~15! and
~31! and then write for each approximationx as function of
fA . In Fig. 7 the results for infinitely long chains in a mo
nomeric solvent are compared for all approximations. Tak
the most accurate equation@the underestimating Eq.~12!# as
the reference, it is concluded that our stationary dynam
approach yields the best approximations also forNA→`.

C. Symmetric multicomponent blends

In Fig. 8 we compare our approximation@Eq. ~41!# with
the exact results@Eq. ~40!# for two-phase regions in sym
metrical three-component blends. The smallerxN, the better
our approximation. The productxN needs to be sufficiently
large for the existence of a three-phase region. Figure 9 g
the result for the lowest possiblexN, which is 2ln452.77
@36#. In this case there is a large discrepancy between
approximation@Eq. ~39!# and the exact result@Eq. ~36!#, in
line with the conclusion above that our model becom
worse for highxN.
8-9
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V. SPINODAL COMPOSITIONS DERIVED
FROM FLUX EXPRESSIONS

Spinodal compositions are strongly related to the bino
compositions. In phase diagrams, the stable and metas
mixtures are separated by the binodal line, while the me
stable and unstable mixtures are separated by the spin
line. Spinodal compositions are sometimes calculated
merically @36#, although they may be calculated analytica
~also for multicomponent systems! by Gibbs’ determinant
approach@37#. We show that exactly the same spinodal co
positions are obtained by means of our flux expressions

Suppose that at some value ofz the volume fractions and
their gradients are such thatJi(z)50 for all i. ~Note that we
now turn toz-dependent fluxes, in contrast to the stationa
fluxes considered in the search for binodal compositions.! At
this z a component does not ‘‘know’’ in which direction
should diffuse, although there may still exist gradients in

FIG. 7. Comparison of all approximations for polymer sol
tions: NA→`, NB51. Curves correspond to Eqs.~12!–~15! and
~31! for the concentrated phaseb, which yield x ref52(1/fA

2)@fA

1 ln(12fA)# ~dots!, xsol(i )5
1
3 fA1

1
2 ~dotted line!, xsol(i i )5

1
4 fA

2

1
1
3 fA1

1
2 ~thin solid curve!, x (A3)5A3/2(A32fA) ~dashed

curve!, xSDA53/624fA ~thick solid curve!.

FIG. 8. Two-phase regions in symmetrical three-compon
blends (K53). Comparison of our approximation~curves! with
exact results~dots:xN52.3 and squares:xN5

8
3 ).
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segment chemical potentials. This indicates that the com
sition of the blend atz may obey the spinodal conditions
Here we show that indeed the spinodal is found by requir
that all fluxes are zero at the same positionz.

We first consider binary blends. The slow- and fast-mo
fluxes @Eqs. ~21! and ~22!# may be written in terms of only
one segment chemical potential by applying the Gib
Duhem equation

JA
s ~z!52D̃AA

s(B)~z!“fA~z!

52
B̃B

LA~z!1LB~z!
LA~z!“mA* ~z!, ~42!

JA
f ~z!52D̃AA

f (B)~z!“fA~z!

52B̃BS fA~z!

B̃A

1
fB~z!

B̃B
D LA~z!“mA* ~z!. ~43!

Due to the condition in Eq.~20!, both components have zer
flux at z5z8 if

D̃AA
(B)~z8!5 f ~z8!

]mA* ~z8!

]fA
50. ~44!

The function f (z) is different for the slow- and fast-mod
models. It is determined by the factors in front of“mA* in
Eqs.~42! and ~43!, respectively. We conclude from Eq.~44!
that the fluxes are zero only for the trivial solution@fA(z8)
50⇒ f (z8)50# or for the spinodal condition (]2F/]fA

2

50⇔]mA /]fA50).
Multicomponent blends containingn11 components

haveJi(z8)50 for all i if

uD̃u50. ~45!

D̃ is a matrix with dimensionsn3n. Its elements are the
mutual diffusion coefficientsD̃ i j

(n11) for either the slow-

t

FIG. 9. Three-phase region in a symmetrical three-compon
blend for lowest value ofxN leading to phase separation, i.e.,xN
52ln4 @36#. Comparison of our approximation~line! with exact
results~dots!.
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STATIONARY DYNAMICS APPROACH TO ANALYTICAL . . . PHYSICAL REVIEW E 69, 021808 ~2004!
mode or the fast-mode model. Following the procedure
binary blends, these diffusion coefficients are written as

D̃ i j
s(n11)5L iS xi j 1 (

k51

k5n11
1

Lk
(
l 51

n

~B̃n112B̃l !f lxl j D ,

~46!

D̃ i j
f (n11)5L iS xi j 1

1

B̃i
(
l 51

n

~B̃n112B̃l !f lxl j D . ~47!

These expressions are found by substituting the Gib
Duhem equation and the total differential ofm i* into the flux
equations~21! and ~22!. Here, xi j is an element of the (n
3n)-matrix Xn and it is equal to (]m i* /]f j )fmÞ j . After
some matrix manipulations~see Appendix! it is found that
the fluxes are all equal to zero if

uD̃su5B̃n11(
k51

n11
1

Lk
S )

l 51

n

L l D uXnu50, ~48!

uD̃fu5B̃n11(
k51

n11
fk

B̃k
S )

l 51

n

L l D uXnu50. ~49!

Since all terms in the summations are definite positive,
fluxes are found to be zero only if any of the compone
vanish or if

uXnu50, ~50!

which is exactly the spinodal condition for homopolym
blends containingn11 components@37#. Both diffusion
mechanisms result in the same spinodal. It is easily veri
that Eqs.~48! and ~49! are indistinguishable if all segmen
have the same mobilities, that they reduce to Eq.~44! for
binary blends, and that their solutions are independent of
segment mobilities.

VI. CONCLUSIONS

The stationary dynamics approach is in principle an ex
approach to obtain the compositions of coexisting pha
The binodal curves result from calculating the compositio
of two distinguishable mixtures such that~i! there is no dif-
fusion between these mixtures in the stationary state and~ii !
an appropriate additional criterion is satisfied. For bina
blends with NA5NB this additional criterion is fA

b

512fA
a . In our approximations we took as a general ad

tional criterion ~both for symmetrical and asymmetrical b
nary blends! that the stationary flux also vanishes betwee
binodal mixture and a critical mixture, assuming that for th
02180
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situation the chemical potential differences are appro
mately equal for both components.

The stationary dynamics approach becomes an appr
mation when the fluxes, written in terms of diffusion coef
cients, are calculated analytically instead of numerically. T
analytically calculated functionz(fA) is not an injection if
x.xcrit ~i.e., one value ofz may have several values forfA)
so that the analytical volume fraction profile between tw
mixtures is necessarily unrealistic. The expressions for
diffusion coefficients require a choice for the diffusio
mechanism as well as a choice for the chemical potential
a function of the volume fractions. These choices determ
whether an analytical approach is possible or not, and
diffusion mechanism determines the accuracy of the appr
mated binodals, although the numerical results will alwa
remain exact. The slow- or fast-mode diffusion mechani
in combination with the Flory-Huggins chemical potenti
yields an analytical approximation for the binodals when
segments have the same mobilities. This approximation
symmetrical blends (NA5NB) is equal to the root-three ap
proximation, and more accurate than the van der Waals
proximation. For blends withNAÞNB , our approximation is
more accurate than the root-three rule as to the compos
of the phase that is relatively rich in the longer chains, a
comparable as to the other~diluted! phase. Our stationary
dynamics approximation is also more accurate than the
proximations for polymer solutions obtained by assum
that the dilute phase is essentially pure solvent. The stat
ary dynamics approach also yields approximations for co
isting phases in symmetrical multicomponent systems,
the accuracy decreases as the number of coexisting ph
increases. Our approximations may serve as good in
guesses for the search of coexisting phases by numerica
culations or simulations. Probably, the stationary dynam
approach may also yield analytical approximations if it
combined with other diffusion mechanisms than the fast-
slow-mode mechanisms or when it is applied to anot
chemical potential than the Flory-Huggins potential.

We also analyzed the fast- and slow-mode flux expr
sions for a specific nonstationary situation. If two mixtur
have arbitrary compositions, it may occur that all fluxes a
zero at some momentt* at some placez* between these
mixtures. This occurs if the composition att* andz* corre-
sponds to a spinodal composition. Therefore, the spino
compositions may be calculated for systems withn11 com-
ponents from the conditionuD̃nu50, where the matrixD̃n

containsn3n diffusion coefficientsD̃. Both the slow-mode
and the fast-mode models yield exactly the same spinoda
calculated by Gibbs’ conditionuXnu50, with elementsxi j

5]m i* /]f j .
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APPENDIX: CALCULATION OF zD̃z

Using Eqs.~46! and ~47!, we have foruD̃u

uD̃su5S )
l 51

n

L l D uXn1Ynu, ~A1!

uD̃fu5S )
l 51

n

f l D uWnXn1Znu. ~A2!

The subscriptn refers to the dimension of the square mat
ces. The matricesWn , Xn , Yn , and Zn have elements de
fined by

wii 5B̃i , wi j 50; j Þ i , ~A3!

xi j 5S ]m i*

]f j
D

fmÞ j ,n11

, ~A4!

yi j 5 (
k51

n11
1

Lk
(
l 51

n

~B̃n112B̃l !f lxl j , ~A5!

zi j 5(
l 51

n

~B̃n112B̃l !f lxl j . ~A6!

Note that all rows ofYn are identical, which is also the cas
for Zn .

We define the matrixAn(k,l ) as the one that is obtaine
by replacing rowsk and l in An with the corresponding rows
of matrix Bn . For example, matrixA4(1,2) is identical to
matrix B4(3,4). FromuAn1Bnu5(k51

n (a1k1b1k)u(A1k)n21

1(B1k)n21u it can be shown by induction thatuAn1Bnu may
be calculated as

uAn1Bnu5uAnu1uBnu for n51 ~A7!
hy

.J

J.

02180
uAn1Bnu5uAnu1uBnu1uAn(1)u1uBn(1)u for n52
~A8!

uAn1Bnu5uAnu1 (
i 151

n

uAn~ i 1!u1 (
i 251

n23

(
i 15 i 211

n

uAn~ i 2 ,i 1!u

1 (
i 351

n24

(
i 25 i 311

n23

(
i 15 i 211

n

uAn~ i 3 ,i 2 ,i 1!u1•••

1 (
i 15n22

n

uAn~1,2,3, . . . ,n23,i 1!u1uBnu

1 (
i 151

n

uBn~ i 1!u1•••

1 (
i 15n22

n

uBn~1,2,3, . . . ,n23,i 1!u for n>3.

~A9!

We will focus on the most complex systems withn>3.
Fortunately, most terms in Eq.~A9! vanish if this equation is
applied touXn1Ynu or to uWnXn1Znu @the determinants in
Eqs.~A1! and~A2!#. This is due to the fact thatuAnu50 if An
has at least two identical rows. Applying Eq.~A9! we obtain
for uD̃u

uD̃su5S )
l 51

n

L l D S uXnu1 (
i 151

n

uXn~ i 1!u D ~A10!

uD̃fu5S )
l 51

n

f l D S uWnXnu1 (
i 151

n

u~WX!n~ i 1!u D . ~A11!

Eqs.~48! and~49! are now readily computed by substitutin

uXn~ i 1!u5S (
k51

n11
1

Lk
D ~B̃n112B̃i 1

!f i 1
, ~A12!

u~WX!n~ i 1!u5S )
l 51

n

B̃l D 1

B̃i 1

~B̃n112B̃i 1
!f i 1

, ~A13!

into Eqs.~A10! and ~A11!.
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