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Stationary dynamics approach to analytical approximations for polymer coexistence curves
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Phase separation in polymer blends is an important process. However, the compositions of the coexisting
phases can only be predicted by numerical methods. We provide simple analytical expressions which serve as
good approximations for the compositions after phase separation of binary homopolymer blends. These ap-
proximations are obtained by a stationary dynamics approach: we calculate the compositions of two polymer
mixtures such that the stationary diffusion between these distinguishable mixtures vanishes. For the diffusion
equations we employ composition-dependent diffusion coefficients, as derived according to the slow- and
fast-mode theory from the Flory-Huggins free energy. The analytical results are in good agreement with exact
(numerically calculatedbinodal compositions. Our coexistence curves are more accurate than some conven-
tional approximations. Another advantage of the stationary dynamics approach is that it is not only applicable
to binary polymer blends or polymer solutions, but also to symmetrical multicomponent blends. The same
diffusion coefficients may be used to obtain the exact spinodal compositions in multicomponent systems.
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[. INTRODUCTION chains are inserted by a growth process, known as the
configurational-bias methof®,7]. Other approaches to cir-
Phase equilibria in polymer solutions and polymer blendssumvent the insertion problem were proposed by Escobedo
are of great interest since in many instances different macrd8] and by Brennan and Maddd®]. The Gibbs ensemble
molecular species are combined to obtain materials with fasimulation result is a good starting point for the Gibbs-
vorable properties. The implications of the phase behaviomuhem integration schenj€0—12, which constitutes an ef-
such as the stability of polymer solutions and blends, is imficient search for coexisting phases.
portant not only in manufacturing and processing of materi- There are some attempts to find the coexistence curve by
als, but also in their applications. simulations in one cell only. The configurational-bias-
The great interest in the phase diagrams has led to a vaaporization method13,14 and the adhesive-wall method
riety of simulation methods which were exclusively devel-[15] simulate the coexisting phases with their interface. The
oped for the determination of coexistence curves. De Pablpistogram reweighing methdd 6,17 is a powerful tool to
et al. present a clear overview of the simulation methfdds  find the coexistence curves by a limited number of simula-
One easy and robust way to obtain the compositions of cotions in which the interfaces need not be present.
existing phases is by Panagiotopoulos’ Gibbs ensemble This large number of attempts to find coexistence curves
simulations[2,3]. This method needs simulation boxes i in polymer fluids indicates the importance of the issue. One
phases may coexist at the imposed temperature and overgléneral feature of such simulation methods is that one needs
composition. The Monte Carlo movements in the simulationo start with a good estimate of the compositions of the co-
allow subsequently the displacement of particld$VI  existent phases. Such an initial guess might be obtained from
simulations, adjustment of the volumeNPT simulation,  a series oftime-consumingtrial simulations(e.g., by virtual
and of the number of particleg/ T simulationg in each of  Gibbs ensemble simulatiori48]) or from simple analytical
thesen boxes. The boxes are in contact due to the conditiorexpressions. Some analytical expressions are available in the
that particles and volume are exchanged, solthat, andT literature. We review them in the following section. In Sec.
are constant for the total of all boxes. Equilibrium is obtainedlll we explain our “stationary dynamics approach” to obtain
when the pressure and chemical potentials are the same in @lhalytical approximations for coexistence curves. In this ap-
boxes. The computation time may be decreased by perfornproach, we look for the compositions of two mixtures at
ing the simulation on a lattice, but then the volume ex-which the stationary flux between these mixtures vanishes.
changes need some extra attenfidrb]. The strength of the We show that this approach in principle yields the exact bin-
Gibbs ensemble method lies in the absence of interfacesidal compositions when the equations are solved numeri-
only bulk phases are simulated. One single simulation boxally. However, when the equations are solved analytically
containing two coexisting phases plus the interface in beenly an approximation is obtained due to the analytically
tween would soon suffer from finite-size effects, especiallyinaccessible discontinuity in the diffusion profiles. We apply
near the critical point. However, problems arise in the Gibbghis approach to binary and symmetric multicomponent
ensemble method when it is applied to macromoleculeshlends. Our analytical coexistence curves from the stationary
since particle exchanges become extremely difficult. The acdynamics approach are compared with other approximations
ceptance probability of these exchanges may increase dnd with exact results in Sec. IV. It is found that our ap-
proach, which is applicable for a wide range of polymer
blends, yields better approximations than those available
*Electronic address: Sonja.Engels@wur.nl from literature. Spinodal curves are strongly related to the
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coexistence curves. Sec. V shows that the exact spinodals oase of symmetrical polymer blendse., Ny=Ng=N),
binary and multicomponent polymer blends may be obtaineavhich includes mixtures of monomersl& 1), the binodal
from our flux expressions. Sec. VI summarizes our findingscompositions are not analytically accessible. In this sym-
metrical casaph=1— ¢4 and Eq.(3) reduces to
[l. ANALYTICAL BINODAL COMPOSITIONS

In this section, we focus on binary blends of homopoly- XN= ! In( P ) . (4)
mersA and B. The approximations that are available from 2651 \1-¢;
the literature apply the Flory-Huggins theory to find an ex- ) o o
pression for the chemical potential. This theory is simple and Numerical methods need good initial guesses to avoid di-
sometimes of limited use for experimental purposes, but it i¥ergence{24] for which analytical approximations are very
still widely applied to understand phase behavior. It is usedelpful. We review three analytical approximations for the
as a reference for newly developed models and it has servédnodal compositions taken from the literature. Only one of
as the basis of new approacHa9—23. Our stationary dy- thesg is generally applicable, the others are either fpr sym-
namics approach is not limited to the use of Flory-Hugginsmetrical blends Ka=Ng=N) or for polymer solutions
theory. We use this only to compare with the approximationdNg=1) only. In the following discussion we need some
available in the literature. extra quantities which may easily be derived from the Flory-
The free energy of mixing per lattice site for incompress-Huggins free energy expression for a binary system. These
ible homopolymer mixtures in the Flory-Huggins model is are the spinodal compositiong;”"=1— ¢z’" that follow
f . . from the spinodal condition®€G/d#2=0) and the critical
[ composition and critical interaction parameter which are
ReT ~ ko7 TOONSE 2 in it 5 .2, $ixii¢i- D given by the critical conditiond2G/agZ = 9°Glad3=0):

Here, ¢; and N; denote the volume fraction and the chain spin b
length(that is, the number of constituent segmemispoly- A —KE—=, ©)
. : . V2
mer i, respectively, and the parameteys quantify the re-
pulsive (y>0) or attractive f<0) net interactions between crit_ ©®)
A~ Rerity

segments andj. Solvents are simply described as molecules
with N=1. Due to the assumption of incompressibility, the 2
Helmholtz (f) and Gibbs(g) free energies differ only by a ) o
constant. Xerit ™3 N, INg/

We are looking for the binodal compositions, i.e., the vol-
ume fractions of both components in the two phasesd Here, we introduced parametéesaind b defined by
B) that coexist at thermal equilibrium, for a given setyds.

These compositions will be denoted, for polymerby ¢4 _1 i(i_ i) ®
and ¢4 . Thermal equilibrium implies equal chemical poten- 2 4x\Nap Ng

tials in both phasesus= w4 and u=ub. These chemical

potentials follow from the standard procedurezs b2 2k?— 1 ©
=0G/dn,, wheren, is the number ofA molecules. Using xNp~

¢A: nANA/(nANA+ nBNB) and G: (nANA+ nBNB)g |t |S
then easy to obtaiwa/Na=g+(1— ¢a)(dg/dp,) so that The parametek,,;; is the value of parametérafter substitu-
tion of x= x¢it into Eq. (8):

FA ot 1= ) ot Ny 2
keT O Ng/ 78" aX e o« \Ns o
“ INa+ NG

where the pure phagewas taken as the reference point. The

expression fog is obtained by interchanging the subscripts

A andB. Obviously, in a binary mixturepg=1—¢. One A. Approximation for symmetrical blends

relation betweenps and 5 follows from ug= 4 : We first consider an analytical approximation for binodal
compositions in blends that consist of two homopolymers

ba Na with equal chain lengthsNa=Ng=N). Th iti
Pa _Nal g o @y pa_ o} gthsNy=Ng=N). The compositions
In¢£+ 1 Ng (da= &n) +Nax[a(¢a—2) are calculated by minimization of a Ginzburg-Landau expan-
sion for the Flory-Huggins free enerd25]. The minimiza-
—¢ﬁ(¢§—2)]=0 (3) tion is preceded by expanding the entropic contribution in

terms of the order parametdr = ¢— ¢°™, which must be
and a second relation, obtained frqu§= w5, is found by  close to zero. This means that the system should be not far
interchanging the subscripts andB in Eg. (3) and substi-  from its critical point. The minimization itself is carried out
tuting ¢g=1—¢,. A numerical method is needed to find according to variational calculus. The result is therefore the
#% and ¢k from these two relations. Even for the simplest coexistence curve according to a free energy functional that
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merely serves as an upper bound for the real free energy.
Here we are only interested in the approximation for the
binodal compositions, Opr— -~~~ — - —|- - -0,

1 3
$VIW=2+ \[Z(XN-2), (11) = =
- < <
but the procedure provides the complete composition profile bg, == ==~ I S Ops
between two liquid phases. It is known as the van der Waals mixture 1 mixture 2

theory of liquid/liquid interfaces.
z, Z—p Z,
B. Approximation for polymer solutions FIG. 1. Schematic picture of the system that is used to obtain
For a polymerA in a solventB we haveN,=N andNg  approximations for binodal compositions: two ideally stirred mix-
=1. The analytical approximation considered here providegures in contact and a composition profile in between. There is no
only the binodal composition of the polymer-rich phase. Theflux if the mixtures are coexistent at equilibrium.
key element of this approximation is the assumption that the
polymer-rich phase3 coexists with a very dilute phase sion of the free energy around the critical interaction param-
which is essentially pure solvent. In other words, is as-  eterx®™ and the critical compositiogpg". He assumed that
sumed to be equal to zero in both phases so that the compelose to the critical point the binodal compositions are equi-
sition of the concentrated phase must obey distant from the critical compositionps— ¢%"'= dh— da" .
Combining the Landau expansion with this assumption, the
equilibrium condition (&= %), and the spinodal condition
(6°Gla¢p?=0) results in a simple relationship between the
(12 coexistence curve and the spinodal, which is known as the

. ) . o root-three rule:
This assumption results in an underestimation of the polymer

content in the concentrated phase, in particular for small val- Ad)E\m
ues of y and for chains that are relatively short. This can g J3, (15
immediately be seen by inspection@f as a function ofp, Pa

[9]. An analytical approximation for Eq.12) in the long-

chain limit is obtained by neglecting the termNlAnd ex- al B . « 8 A
panding the logarithm, assuming sma#ll, even in the Here, ™ means eithegp, or ¢ . Substituting Eqs(5) and

polymer-rich phase, which is valid fod—c and small (6) into Eq. (15) yields for the root-three approximation for

; . B)y-
— xei) = (x—1/2). If the expansion is truncated after the Pinodal compositiongdenoted VONDE
term proportional to (bﬁ)"’, we obtain for the binodal com-

B a
HB _HB _ . g
kT kgT M= dn)+

Lt
N

Pa+x(pR)?=0.

where A(b'lz\in: d)X’B—(ﬁﬁm and A¢Zpin: ¢Zpin1/spin2_ d)zrit.

(V3B . K oy+1
position of the polymer-rich phase: 8= Kert V3(k—kei) + 3b V6. (16
dP0=3(y—1). (13 IIl. STATIONARY DYNAMICS APPROXIMATION

Truncation after the next term still results in an analytical ©ur approach to find an approximation for the coexistence

expression: curve for given y is completely different from the ap-
proaches in Sec. Il. We consider two polymer mixtures that
iy 2 - differ in their compositions and that are brought into contact
¢Z°("):§[—1+ V1I+9(x—2)] (14)  as shown in Fig. 1. It is assumed that these mixtures are

infinitely large and ideally stirred, so that their compositions

Due to the truncation, these approximations are overestiml® not change in time. Generally, a diffusion flux will occur
tions of the underestimating E6L2). The result of this error  P€tween these mixtures, driven by the concentration gradi-
compensation will be shown in Sec. IV. The assumption thaENtS: O, more precisely, by the chemical potential gradients.
a concentrated polymer solutions coexists with pure solvent NiS iS the key idea of our approadifi:the compositions of
forms the basis for an osmotic Gibbs ensemble simulatiof’® Mixtures are chosen such that the mixtures represent co-

technique that circumvents the necessity for insertion an§Xisting phases, there is no diffusion flkis statement can-
deletion of macromoleculd$]. not be inverted: the diffusion flux may also be absent for

other compositions than that of coexisting phases, the trivial
case being equal compositions for both mixtures. In the sta-
tionary situation, there is no accumulation of material within
Sanchez[26] has derived an approximation for Flory- the contact zone between the two mixtures, and the fluxes are
Huggins coexistence curves that is valid both for symmetri-constant in time. Thus we can assign one value to the flux of
cal and asymmetrical binary blends as well as for polymereach polymer in the stationary state. Our approach is to find
solutions. His derivation is based upon a Landau-type exparthose compositions that result in vanishing stationary fluxes

C. Approximation for all binary mixtures
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for all polymers. A similar idea forms the basis of a numeri-
cal algorithm to obtain phase diagraf®7]. The analytical
approximations for binodal compositions that we find from
thissD ftationary dynamics approatBDA) will be denoted by
ke

We first need to derive expressions for the segment fluxes
(Sec. lll A), where we consider only one-dimensional diffu-
sion perpendicular to the interface between the two mixtures.
We will present the equations for stationary fluxes according
to two different diffusion mechanisms. The assumptions
about the diffusion mechanism are critical; they do not have
an effect on the exact numerical results, but they determine
whether it is possible to obtain an approximation for the 0 . . . ‘
coexistence curve. 0 20 40

The flux can be written in terms of Onsager coefficients 7
and driving forces so that we generally have

FIG. 2. Stationary volume fraction profiles between two stable
—f(p)Vuesddz=—1(o)du. 17 mixtures calculated numericallghin curve and analytically(thick
curve. Ny=30, Ng=10, y=0.14.

The functionf(¢) depends on the diffusion mechanism as
will be seen in Sec. Il B. In the stationary state, the flux is aodals by analytically solving Eq(19). The discontinuous
constant so that integration of E(L7) from z=z, to z=z, jumps are a consequence of our simple definition for the
yields for vanishing stationary fluxes segmental chemical potential, necessary for the analytical ap-
proach; this definition yields the correct value in the bulk
phases but implies a simplification in the interfacial region. A
more sophisticated expression of this potential, presented in
Ref.[28], yields continuous profiles without any loop.
At least one of the solutions of this equation yields the exact We will see in Sec. Il B that Eqg18) or (19) is a suffi-
binodal compositions, independent of the functibfi). cient condition for vanishing stationary fluxes between posi-
This is becausé" *f(¢$)du always equals zero; one of the tionsz; andz,, but only a necessary condition for coexisting
solutions of Eq. (18) is found for u(z;)=u(z,), which is  phases at these positions. We will need an additional crite-
the requirement for binodal compositionszatandz,. How-  rion for coexistence.
ever, an analytical approach requires the fluxes to be rewrit-

(- 210% — [ “t(p)du-0 (19

ten in terms of diffusion coefficients: A. Flux expressions
The expressions for the fluxes between polymer mixtures
_ stat_ _ _ can be derived along the lines of the well-known fast-mode
(22— 2] f D(¢)dg= f f(¢ d¢ 0. [29,30 and slow-modd31] models. Experimentalists have

(190  tried to verify the predictions of each model, but there is no
definite preference for any of them: some experiments are

Now the functionf (¢) determinegtogether with the chosen more consistent with the slow-mode modaR,33, others
expression for the chemical potenjiathether this equation with the fast-mode modd34,35. For a more detailed dis-
can be solved analytically or not, and if it can be solvedcussion, see Ref28].
analytically, it determines the accuracy of the approximation. The diffusion models were originally developed for bi-
If the functionf(¢) is a constant, E19) requires a numeri- nary blends, but may easily be generalized to multicompo-
cal calculation. Iff (¢) is not a constant, analytical solutions nent blends as shown in R¢28]. Here, we only present the
may be possible, but numerical calculations still yield theresults. In order to describe the diffusion on the scale of
exact binodals, since EqL9) is equivalent to Eq(18). The  segments, thesegmentchemical potentials.* are needed.
discrepancy between the numerical and analytical solutionghey are simply calculated by dividing the chemical poten-
of Eq. (19) originates from the shape of the volume fractiontial of a chainu by the number of chain segmets This is
profiles betweerz; and z,; numerical profiles show a dis- an approximation since it is assumed that all segments of one
continuity while the analytical profiles have a loop. This is chain have the same environment, although in the interfacial
shown in Fig. 2 for a binary system. The numerical profilesregion the mixture is inhomogeneous on the length scale of
are calculated by the mean field stationary dynamics methothe chain. In both diffusion models the segment fluxes satisfy
[28] and the analytical profiles by solving EA.9) with the  the relation
help of a simple form for the diffusion coefficient, presented
later in Eqg.(27). The analytical computation yields the in- E =0 20)
verse of the volume fraction profile ¢,) instead ofpA(2). =
Since analytical solutions will never yield the discontinuous
jumps, we only obtain an approximation for the exact bin-where the summation is taken over all segment typds-
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cording to the slow-mode model, the system is incompress- B z,
ible and it is assumed that segmeaAtsiffuse by exchanging N J daded(uh— )
their positions with the positions of segments of type [22=21])7
B,C,D, . ... Thefluxes are then given by B i
2
== dux=0. 25
A [ZZ_ZJ_] 2 ¢A Iu‘A ( )
A

*
; AjVug - (21) For the third equality we used the Gibbs-Duhem equation
Ei A (Z;¢idu;i=0) and pp+ Ppg=1. We see that the flux van-
ishes if % (21) — g (22) = ua(z2) — g (22), or in other
words if Aux =Auk , whereAu* = u*(z,) — u*(z;). This
The fast-mode model assumes that there is an additional fliccurs (i) if mixtures 1 and 2 are identicalji) if they are
of Segments due to drift flow. This results in fluxes that arecoexistent Or,(m) if the driving force for diﬁusion of seg-
expressed by mentsA is nonzero and the samequal and in the same
direction as for segmentB. In the third scenario none of the
segments will be able to diffuse due to the incompressibility
J=—A\Vui+ ¢AZ AjVui. (220 constrainf{Eq. (20)]. This scenario can only occur if at least
J one of the two mixtures is not stak(iee., inside the binodal
since different stable mixtures always have different chemi-
The difference between these two equations is thus a diffe€@l Potentials if the mixtures are noncoexistent.
ent prefactor o£ AV u: the volume fraction in Eq22), and Comparing Eq(25) with Eq. (18) we find that in this case
an “Onsager fraction” in Eq(21). In the above equations the functionf(#) in Eq. (18) is given by
A, is an Onsager coefficient, which can be expressed in

terms of the mobility coefficienB, of segmentsA: () =Béa, (26
and by using Eq(19) and the Flory-Huggins chemical po-
Aa(2)=Bada(2). (23)  tential we find forD(¢):
D(¢n) _ I i 1

The mobility coefficients may reflect the influence of en- T —f(¢A)&¢ ﬁ=§¢A¢B ¢—N+ PN —2x1.
tanglements on the dynamics of chains. This can be ac- ° ATB ATA  TBTTB @7
counted for by considering the mobility coefficients to be a

function of the monomer concentrations and chain lengthsirhe functionf(¢,) is linear iné, , which allows an analyti-
[29,28. However, in this study we consider the mobility co- ca| expression for the stationary flux according do
efficients B as being constant. Since we are interested in- _ (Hqg,:

equilibrium properties of the blends, the choice of mobility

coefficients should not be critical. In Sec. Ill C we explore ISR T ppar— o) day+ dardas+ d2o— 3K(dar+ dan)
the influence of segment mobilities on the approximations

for binodal compositions. Note that the slow-mode and fast- +3k?—2b?], (28
mode expressions become identical if all segments have the o
same mobilityB,=Bg=-- - =B. whereC= 3B ykgT/[2,—z,]. There may exist many combi-

In the following we apply the stationary dynamics ap- nations of,; and ¢,, for which the stationary flux van-
proach to binary and multicomponent blends. We simply usdshes. One of these combinations is the trivial case of iden-
the Flory-Huggins expression for the segment chemical potical blends ¢a;=¢,,), another combination must be the
tential, since it allows direct comparison with the approxima-coexisting blends¢ 1= ¢ andg,= ¢f§ or vice versy the
tions discussed in Sec. II. In principle, any expression for theemaining combinations must have eithgf< ¢, < ¢4 or
segment chemical potential could be chosen, as long as E@r<pa< ¢§ or both.

(19) can be solved analytically. To find the best approximation for coexisting phasez, at
andz,, we need an extra criterion in addition to the require-
B. Application to binary blends, B,=Bg ment

We first apply the stationary dynamics approach to binary — da;+ da1baz+ das— 3K(da1+ daz) +3k?— $b?=0,

blends. For binary blends witB,=Bz=B we have accord- (29)

ing to Eqs.(21) and(22) in particular forN,# Ng. Therefore it is convenient to in-

(24) spect thg general plo_t of the station_ary flux vs thg composi-
tion of mixture 2 for giveng,; (see Fig. 3. If both mixtures
are stable, we havé3?®>0 (diffusion to the right for ¢,

Thus a vanishing stationary flux corresponds to < ¢ and IF¥<0 (diffusion to the leff for ¢pa,> dar. If

I3=Jh=—BoadeV(ui—us).
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6 =024 spA_ 4L, = 1 SxN-6
A b _kizwé_zi \/ N (30

0.22

For symmetrical blendk=Kk;;= 3, so that for these blends
0 our approximation is identical to the root-three rule approxi-
mation[Eq. (16)].

0.2
1 /\
0 \\/ RN i tat
Although we did not need the plot I*' vs ¢4, for the
additional criterion, we can of course still relate this plot to
0.1 0.2 0

$°". The inflection point ofJ3%(¢pa,) for symmetrical
blends does not only lie exactly halfway the spinodal com-
positions, but also halfway the binodal compositions, since
|p5— pPM =] ph— 3P, In other words for symmetrical
3 systems the zero point 2 in Fig. 3 is also the inflection point.
o Thus for symmetrical blends the stationary flux vanishes if
A2 mixture 1 has a binodal composition, and mixture 2 has ei-
FIG. 3. Analytically calculated stationary flux as function of the ther the same compositidipoint 3), or the coexisting com-
composition of mixture 2 for different compositions of mixture 1, as POSition (point 1), or the composition of the inflection point

indicated by the value of,;. No=100, Ng=1, y=0.63. (ha2=k, point 2)-. .Hence,. instead of selectingp,=1

— ¢, as the additional criterion, we could have selected
. . . _ éda,=k. Indeed, substitution ofpp,=k=Kk =3 into Eq.
one of the mixtures is unstab(_m5|de the binodal cur\)e_the (29) yields the same approximation for the binodal compo-
stationary flux may be negative f@bp,< a1 and positive  gitions as presented by E€RO).

for ¢ar> pa; depending on the chemical potentials of all

components. Differentiating Eq28) with respect tog,, at 2. B,=Bg and N,#Npg
constant ¢a; gives 335 dpa=0 when ¢p,=k+b/\2. , . 5
Comparing this with Eq(5), we see that the minimum and Ve do not have a simple relation betwegf and ¢, for
maximum in Fig. 3 correspond to the spinodal compositionNA%NB which could be used as the necessary criterion in
of mixture 2. Also,d2J5 92, =0 for ¢a,=k: the inflec- addition to Eq.(29). We propose two alternative additional
fion point Iiés hal;‘wa;; the /i\vzvo local e/;Ztrerr;a Hence thecriteria for vanishing fluxes if mixture 1 has a binodal com-

L . : o position: ¢pa,=Kk or ¢ar=Kgit. FOor No=Ng these criteria
position of the two extrema and the inflection point in be'are identical and they yield the approximation as presented in

tween dto no': dtepen(tz! O"ﬁ”Al‘ In Iaﬁt’ up(f)n chan%ingSAl the Eq. (30). Both criteria obey the requirement th#{*( ¢,,)
curves transiate vertically, as follows from H@S). has three intersections with the lidg*<=0 if mixture 1 has

Depending on the choice faf,, the curve has either one, a binodal composition, since bokhandk,;; are somewhere

two, or three zero points. These pom_ts are indicated by thBetween the two spinodal compositions which correspond to
numbers 1, 2, and 3 fopa; =0.22. Point 3 corresponds t0 ha |ocal extrema of the curve.

$n2= ba1, points 1 and 2 can be found by solving the qua-  The first choice for the additional criterionpg,=k) is
dratic eqctjatlor(zg). If mixture 1 has a blnod:tl comp05|t|on related to the inflection point alS™(¢,,). By taking this
(¢a1=¢p) the three zero points arg,=¢a (point 3, criterion, we assume that we must vertically translate the
Paz= ¢4 (point 1), and A< par<¢a (point 2. This zero  curveJSB( ¢,,) until the inflection point is also a zero point

point 2 gives the necessary condition for coexisting phases igf 352!, The other zero points are then supposed to be the
addition to Eq.(29). It must represent the situation that pinodal compositions.

Apx=Apg#0. The additional condition is thaps, must The alternative choice for the additional criteriogh,
have a certain given valughat of zero point 2 so that Eq.  =k;= ¢%") is related to the observation in E@5) that the

(29 is obeyed only if mixture 1 has a binodal pomppsition.stationary flux vanishes ih ux =Auf . By taking this cri-
We look for the appropriate value of zero point 2 in Sec.terion we assume that both components in a mixture with a
1B 2 after exploring the approximation for symmetrical pinodal composition feel the same driving force for diffusion

systems in the following section. when the other mixture has a critical composition. This is
equivalent to the assumption that the chemical potential dif-
1.B,=Bg and Ny=Njg ference between the two componepfs— uj is equal in the

. . binodal and the critical compositions.
In a symmetrical binary blend, both components have the \ye aiso based the selection of these two criteria on nu-

same chain Iengttht. For such systems, we do not explicitly,erica| calculations of the stationary flux. By use of the
need the plot ofJ3* vs ¢n,: the extra criterion for coexist-  ean field stationary dynamics meth@8] the flux can be
ence is simplypi=¢g=1-p4. Substitution ofpp,=1  calculated exactly according to E€L8). In these numerical
—¢a1 andNp=Ng=N into Eq. (29) yields the analytical calculations(also based upon the Flory-Huggins free energy
approximation for binodal compositions in symmetrical bi- functiona), mixture 1 was kept at the binodal composition

nary blends in whictB,=Bg: ¢%. We varied the composition of mixture 2 betweén,
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1. Slow-mode diffusion mechanism
N=800.Ng=1x=0.58 | From Eq.(21) we find for the slow-mode flux
x
3
B ~ ~ [ dads
g0 [2,-2,]93%%= _BABBJ = d(pxr—mp).
2 / / 21 Badpat+Bpdp
5L i (32
| | The functionf(¢,) is found by applying the Gibbs-Duhem
o N =100,N_=50,3=0.037 equation to Eq(32):
Coin ] N,=100N_=1,x=074 o
e N =100,N _=1,x=0.66 f(¢ ):E 'B (33)
o A B A ABBT == = -
- ‘ ‘ ‘ ¢a(Bo—Bg)+Bg
0 m 0.1 0.2 0.3 0.4 05
K ¢A2 This function does not allow the analytical solution 152!

- =—[Dd¢=0, in contrast to the functioh(¢) in Eq. (26),

FIG. 4. The exact stationary flux between two mixtures for four\yhich is linear in¢, and follows from Eq.(33) by substi-
different systems. In all systems, one mixtukg,() has a binodal tuting B.-B
A=DBB-

composition. The compositiogh,, of the other mixture increases . .
> . If segmentsB are almost immobile compared to segments
from k;; to k. For the four combinations dfl,, Ng, andy given

in the figure (from left to right k.;=5.46<1072, 9.09x10°2, A i.e., in the limit of Bo/Bg—, we obtainf(¢$)—Bg.

9.09x10 2, 0.414 andk=7.04x10"2, 0.125, 0.166, 0.432. The The diffusion may thus be described by the diffusion of only

exact stationary flux always vanishes for some valuepgj in  One(the slowestcomponent. Density gradients are immedi-

between these limits. ately relaxed by the other component. Siri¢e,) is a con-
stant,J$®= — [Dd ¢ would again require a numerical calcu-

=k and ¢pa,=k. Figure 4 presents the results for various|ation. In the limit of Bg/By— it is found thatf(¢g)

systems withN,>Ng and B,=Bg. Each curve is in fact —B,.

part of a curve as presented in Fig. 3, viz. the part close to

point 2. The two main intersections with the horizontal axis 2. Fast-mode diffusion mechanism

would occur forga,= ¢pa and gar= cpﬁ. Indeed, the third

intersection of the stationary flux with the horizontal axis by

occurs forkg i< par<k.

To select the best of our two additional criteria, we ob- - (2 - (2
serve that the first,,=k) yields the same result as ob- [Z2—2z]I3% = _BAJ ¢A¢Bth\+BBI badbedug ,
tained in Eq.(30): ¢5°"=k+ 1b\6. A weak aspect of this “ a (34
criterion is that the resulting binodal compositions are both
equally far from the spinodal compositions, which is not truesg that we find forf (,)
for real binodal compositions. We therefore select the alter-
native (bar,=Keit) as the necessary condition for a binodal B B _B 2
compositiAcfn ofc”tthe mixture at the right hand side. Substitu- H(@2)=Badat (Be=Ba) da- (39
tion of ¢ar=Kerie into Eq. (29 yields the stationary dynam- |n combination with the Flory-Huggins potentials, this func-
ics apprOX|mat|on~for Emodal compositions in binary blendstion only provides an analytical solution faf®= — [Dd¢
W|th NAiNB andBA:BB: =0 if NA:NB'

The fast-mode stationary flux for binary systems is given

SPA= 13k —Kgig= V62— 3(k—kei)?]. (3D D. Application to symmetrical multicomponent blends

_ o _ _ We now consider symmetrical systems contairkhgom-
We have compared this approximation with the approximaponents. The symmetry in these systems arises from require-
tion obtained frompa,=k in plots similar to those to follow  ments on chain lengths and interaction parametés:
tham gk SlhoLgh he rumericaly calcaared fx has ! 210 Xy =xVi,j#i. Moreover, we assumds
A2 9 Y =BVi. At the corners of thek-phase region the volume

zero point 2 closer td than tokg,;; . .
P erit fractions of (K—1) components are equal ¥°, and one
L component has volume fraction-I(K — 1) . It is our aim
C. Application to binary blends, B,#Bg to find ¢°° as function ofyN. The exact solution is numeri-

The segment mobilities enter the expressions for the stazally available from36]:

tionary flux via the functionf(¢), and may thereby deter- 1 1
mine whether an analytical prediction of the binodal compo- ——In|——(K—1) |=xN. (36)
sitions is possible or not. 1-Kgp® | ¢
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For our approach we write the flux by use of either Eq. 3.2

(21) or (22) and the Gibbs-Duhem equation as Ny . 1
Ia=—BoaVur=—2 f m)( i Vo 28I\ Y :
! ¢] #i,n 26 .. :
37 ' . .
. , 2.4
In analogy to the approach for binary blends, we find for the
mutual diffusion coefficients D), defined by Jx= 221 ]
~=DiPV e o
I 1 18 ‘ ‘ ‘ ‘
BT = dpdix— Padk Xt (6pk— Oai)| dax— N 0 0.2 0.4 0.6 0.8 1
B
(38) O
The Kronecker deltal,g equals unity forA=B and is zero FIG. 5. Comparison of exact and approximated coexistence

otherwise. The superscrifi) indicates thaty is written as ~ curves for binary homopolymer systems wiili=Ng=N. Curve 1

1—3. ¢, which is necessary in the calculation of the total 'S the exact binoddEg. (4)], curve 2 is our analytical approxima-
differlentiai in Eq.(37) tion [Eq. (30)], which in this case equals the root-three rule approxi-

dnatlon[Eq (16)], curve 3 is the analytical van der Waals approxi-

We assume that we should always find the same comp hation[Eq. (11)].

sitions for the coexisting phases independent on the profiles
of componentsB,C, ... ,K—1 at the interface between
these phases. In other words we substthﬁ, 0 for all " 1 [

i#A,K into Eq.(37) so thatJa=-D)Vg,. We need to 4=

calculate ¢°° for which fiiDﬁ&dgﬁA—O. After the integra-
tion we substitute o= dxo=d°, dPar=dx1=1—(K N \/ _ m K2 _ z( _ i)}
—1)¢% and ¢, = ¢io= ¢p*Vi#A,K. Again[as for the bi- = V241K T (7 K)THB(K =17 1 xN/ |’
nary systems, Eq28)] the result is a cubic equation ix°°. (41)
One root of this polynomial is known: the flux should at least

vanish if all components have the same volume fractions,

thus = 1/K. The two remaining roots are then found to be t1is reduces to Eq39) for ¢M= .

pO=— L le- K+\/3K2 3- >
2K? xN

_|_
1-K 2(K-1)?

+12(3—K)}.
(39

IV. RESULTS

The performance of our approximations for the binodal
compositions can easily be evaluated by comparing them
with the numerically calculated binodal and with other ap-
o . o . proximations. In this section, we only consider our approxi-
region increases withyN, ¢ must decrease withN. We mations for systems with equal segment mobilities for all

must therefore use the minus sign in £89). . components, so that the fast- and slow-mode models are
We can also find approximations for the compositions aﬁdentical

the corners of K—1)-phase regionsfor K>2). At these
corners, one minority component has volume fractigh,
(K—2) components have volume fractio#$°, and the vol-
ume fraction of the last component is-Ip™— (K—2) . ) ) )
We want to obtaing® as a function of¢™ and yN. The In Fig. 5 we have plotted three binodalsoexistence

exact solution can be calculated numerically frfB6] curves. The use of the variablgN allows to cover all pos-
sible symmetrical binary systems at once. Curve 1 is the

Only one of these two roots is a valid approximatjomless
K =2 for which ¢ reduces to Eq(30)]. Since theK-phase

A. Symmetric binary blends

1 1— M exact binodal, curve 2 is our approximatigd#q. (30)], which
In —(K—=2)|=xN. (40) in this case equals the root-three rule approximation, and
1-¢pM—(K—=1)¢p° P°° curve 3 is the approximation obtained by the van der Waals

theory of fluid interface§Eq. (11)]. It is seen that all ap-
Taking the integral of the mutual diffusion coefficient and proximations perform well for systems not too far from their
substituting two corner compositions into the result yields ecritical point (y\N=2) and that our approximatiofor the
cubic equation in®®. One root is given by¢®=(1  root-three rulgis significantly more accurate than van der
—¢™/(K—1). The others are Waals’ approximation for largegN.
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0.04 0.1
X . N, =100 . X
0.038 Y NB=50 . 1
0.036F+ \e . - 0.095
0.034 - . o |
0.032 - E 0.09
0.03 + b
0.028 . . . . 0.085
0 0.2 0.4 0.6 0.8 1
a) ¢A b)
0.75 -
(V3)
X A X 064
0.62
0.7
sol( i) 0.6
— 9,
0.58
0.65
0.56
sol( i)
¢
A 0.54
0.6 . : 0.52 . . .
0 0.125 0.25 0.375 05 0 0.1 0.2 0.3 0.4

0 y 0

c)
FIG. 6. Comparison of our approximation, E®1), (thick solid curvey with the exact binodaldotg, the root-three rule of Eq.16)
(dashed curvesand the solution approximations of Eq43) and (14) (dotted and thin solid curves, respectively

B. Asymmetrical binary blends chain lengths 100 and 1000, respectively, we see that our

Figures 6a)—6(d) illustrate the performance of our ap- @PProximation is much more accurate thﬁj\?zgl(i%nq¢i°'(“)
proximation for some typical examples of asymmetrical bi-(dotted lines. The accuracies o™’ and " increase
nary blends. The dots in these figures always represent tHéith Na. We may substitut®l,— into Egs.(12)—(15) and
exact binodals, the solid curves correspond to our approxic31) and then write for each approximatignas function of
mation given by Eq(31), and the dashed curves to the root- ¢4+ In Fig. 7 the results for infinitely long chains in a mo-
three rule. In Fig. @) the chain lengths do not differ too nomeric solvent are compared for all approximations. Taking

much, and our approximation almost coincides with the root{ﬂg r%?:ﬁeicccgrit?segggggg: du?ﬁ;{%ﬂf@?g{;gé?j%gﬁ;mics
three result. Moreover, the accuracy of our approximation is o L
comparable to that for symmetrical iystems. \F;\Fl)ith increasingjelppro'fleh yields the best approximations alsoNgr-cc.
NA/Ng the discrepancy between our approximation and the
root-three result increases, in particular for the branch of the
coexistence curve that corresponds to the phase that is rela- In Fig. 8 we compare our approximati¢gq. (41)] with
tively rich in the longer chains. Our approximation is morethe exact result$Eq. (40)] for two-phase regions in sym-
accurate for this branch. For the other braridhute in the  metrical three-component blends. The smajlsy, the better
longer chaing the root-three rule is slightly more accurate our approximation. The produgiN needs to be sufficiently
than our approximation, but the difference is very small.large for the existence of a three-phase region. Figure 9 gives

Both approximations for the diluted branch fail for high  the result for the lowest possibjeN, which is 2In4=2.77

C. Symmetric multicomponent blends

since they predict negative volume fractions. [36]. In this case there is a large discrepancy between our
We can also compare our approximation with the approxi-approximationEg. (39)] and the exact resulEq. (36)], in
mations for polymer solutiongEgs. (13) and(14)]. In Figs.  line with the conclusion above that our model becomes

6(c) and @d) (Ng=1), where the polymer in solution has worse for highyN.
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il C

X 44l . d
12+ . |
. /

. /

l. ,
1L . s
0 8 L .. z (e . -
z -
- -
A
z. "
06 - e .
] 0.25 0.5 0.75 1
¢A FIG. 9. Three-phase region in a symmetrical three-component

blend for lowest value oiN leading to phase separation, i.gN
FIG. 7. Comparison of all approximations for polymer solu- =2In4 [36]. Comparison of our approximatiofine) with exact
tions: Ny—, Ng=1. Curves correspond to Eg&l2)—(15) and results(dots.
(31) for the concentrated phagg which yield x"®'= — (1/¢2)[ ¢
+In(1-¢n)] (dots, x*'V=3¢,+3 (dotted ling, x*W=Z2¢2  segment chemical potentials. This indicates that the compo-
+1ga+t (thin solid curve, x(®=13/2(y3-¢,) (dashed sition of the blend az may obey the spinodal conditions.

curve), xSPA=3/6—4¢, (thick solid curve. Here we show that indeed the spinodal is found by requiring
that all fluxes are zero at the same position
V. SPINODAL COMPOSITIONS DERIVED We first consider binary blends. The slow- and fast-mode
FROM FLUX EXPRESSIONS fluxes[Egs.(21) and(22)] may be written in terms of only

ne segment chemical potential by applying the Gibbs-

Spinodal compositions are strongly related to the binoda :
euhem equation

compositions. In phase diagrams, the stable and metastab
mixtures are separated by the binodal line, while the meta-

stable and unstable mixtures are separated by the spinodal Ja(2)= _DSA(E)(Z)V¢A(Z)
line. Spinodal compositions are sometimes calculated nu- B
merically [36], although they may be calculated analytically - —BAA(Z)V,u*(z) (42)
(also for multicomponent systemdy Gibbs’ determinant Aa(2)+Ag(2) AD
approach 37]. We show that exactly the same spinodal com-
positions are obtained by means of our flux expressions. I(2)=-DB(2)Va(2)
Suppose that at some valueothe volume fractions and
their gradients are such th&i(z) =0 for all i. (Note that we ~ [ da(2)  Dp(2)
now turn toz-dependent fluxes, in contrast to the stationary = _BB( B, + Bs )AA(Z)V“X(Z)' (43)

fluxes considered in the search for binodal compositjois.

this z a component does not “know” in which direction it 6 15 the condition in E¢20), both components have zero
should diffuse, although there may still exist gradients in thGTqu atz=7' i

C * (0
BE() =12 ) (44)
dpa

The functionf(z) is different for the slow- and fast-mode
models. It is determined by the factors in front Bfuj in
Eqgs.(42) and(43), respectively. We conclude from El4)
that the fluxes are zero only for the trivial solutipgp(z")
=0="f(z")=0] or for the spinodal condition o’(zF/ad)i
=0=dupldpa=0).

Multicomponent blends containingh+21 components
haveJ;(z')=0 for all i if

|D|=0. (45)

FIG. 8. Two-phase regions in symmetrical three-component. | ) ) ) )
blends K=3). Comparison of our approximatiofturveg with D IS & matrix with d|menS|oDmx n. Its elements are the
exact resultgdots: yN=2.3 and squareyN=£). mutual diffusion coefficientD{!* " for either the slow-
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mode or the fast-mode model. Following the procedure foisituation the chemical potential differences are approxi-
binary blends, these diffusion coefficients are written as  mately equal for both components.
The stationary dynamics approach becomes an approxi-
k=n+1 n mation when the fluxes, written in terms of diffusion coeffi-
Xij + > Ai > (Bns1— B dix; ) , cients,_ are calculated analyt?cally ins_tead of nu_m_eric_ally._ The
1 Al analytically calculated functioz(¢,) is not an injection if
(46) X> Xxait (1.€., one value of may have several values fér,)
so that the analytical volume fraction profile between two
10 mixtures is necessarily unrealistic. The expressions for the
Difj(n+1)=Ai(Xij+~_z (Bn+1—B|)¢|X|j)- (47) dlfoSIOH' coefficients require a choice for. the dlﬁu§|on
B; =1 mechanism as well as a choice for the chemical potentials as
a function of the volume fractions. These choices determine
_ o . whether an analytical approach is possible or not, and the
These expressions are found by substituting the Gibbsyitision mechanism determines the accuracy of the approxi-
Duhem equation and the total differential of into the flux 1 \5i0 binodals, although the numerical results will always
equations(21) and (22). Here, X is an element of then(  omain exact. The slow- or fast-mode diffusion mechanism
xn)-matrix X, and it is equal 1 {ui'/9¢;)gm=j- AftEr iy compination with the Flory-Huggins chemical potential
some matrix manipulationésee Append|)< it is found that yields an analytical approximation for the binodals when all
the fluxes are all equal to zero if segments have the same mobilities. This approximation for
symmetrical blendsN,=Ng) is equal to the root-three ap-
proximation, and more accurate than the van der Waals ap-
|X,|=0, (48)  proximation. For blends witlN,# Ng, our approximation is
more accurate than the root-three rule as to the composition
of the phase that is relatively rich in the longer chains, and
n+1 n comparable as to the othédiluted phase. Our stationary
1D1=B,,1> ﬂ( 1T A|) |X,|=0. (490  dynamics approximation is also more accurate than the ap-
=1 B, \I=1 proximations for polymer solutions obtained by assuming
that the dilute phase is essentially pure solvent. The station-
ary dynamics approach also yields approximations for coex-
Since all terms in the summations are definite positive, thesting phases in symmetrical multicomponent systems, but
fluxes are found to be zero only if any of the componentshe accuracy decreases as the number of coexisting phases
vanish or if increases. Our approximations may serve as good initial
guesses for the search of coexisting phases by numerical cal-
culations or simulations. Probably, the stationary dynamics
approach may also yield analytical approximations if it is
combined with other diffusion mechanisms than the fast- or
slow-mode mechanisms or when it is applied to another
chemical potential than the Flory-Huggins potential.
d We also analyzed the fast- and slow-mode flux expres-

that Eqgs.(48) and (49) are indistinguishable if all segments SIONS for.a specific no_nstationary situation. If two mixtures
have the same mobilities, that they reduce to ) for have arbitrary compositions, it may occur that all fluxes are

binary blends, and that their solutions are independent of thg€"0 at some moment at some place* betwe*en these
segment mobilities. mixtures. This occurs if the composition &t andz* corre-

sponds to a spinodal composition. Therefore, the spinodal
compositions may be calculated for systems withl com-

V1. CONCLUSIONS ponents from the conditiohD,|=0, where the matrixD,,
containsn X n diffusion coefficientdD. Both the slow-mode

The stationary dynamics approach is in principle an exachng the fast-mode models yield exactly the same spinodal as

approach to obtain the compositions of coexisting phasegg|culated by Gibbs’ conditiofiX,|=0, with elementsx;;
The binodal curves result from calculating the compositions_ Jutlad,
: .

of two distinguishable mixtures such th@t there is no dif-
fusion between these mixtures in the stationary state(iand
an appropriate additional criterion is satisfied. For binary
blends with No=Ng this additional criterion is q&ﬁ
=1—¢a. In our approximations we took as a general addi-
tional criterion(both for symmetrical and asymmetrical bi-  This research was financially supported by the Council for
nary blendsthat the stationary flux also vanishes between a&Chemical Sciences of the Netherlands Organization for Sci-
binodal mixture and a critical mixture, assuming that for thisentific ResearciCW-NWO).

’Disj(n+l): Ai

n+1

N 1/
1B =By 2, A_(H A
k=1 k\l=1

[Xn| =0, (50)

which is exactly the spinodal condition for homopolymer
blends containingn+1 componentg37]. Both diffusion
mechanisms result in the same spinodal. It is easily verifie
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APPENDIX: CALCULATION OF |D| |[An+Bn=|A+ B+ |A(D)|+|Bn(1)] for n=2
~ A8
Using Egs.(46) and (47), we have for|D| , (A8)
n— n
; A, +Bn|—|An|+E AniDl+ 2 2 [An(iziy)]
~ 27 1=I2t
|D5|=(Iljl Ay [IXa+ Yl (A1) s
"’E > E |An(i3,i21i1)|+"'
n ig=1ip=igt1lig=ip+
IDfI=(|Hl ¢|) [WoXn+ Zy. (A2) n
+ 2 J1A1.23 . n=3iy)|+[B,]
The subscripth refers to the dimension of the square matri- e
ces. The matrice®V,, X,, Y,, andZ, have elements de- n
fined by + > |Byig)|+ -
i1=1
~ L n
Wi =B, wy =0V j#i, (A3) + 3 [By(123...n-3iy| for n=3.
=
((9,ui* (Ad) (A9)
Xij=|——- : : .
U\ ady b We will focus on the most complex systems witk=3.
meln Fortunately, most terms in E¢A9) vanish if this equation is
applied to|X,+Y,| or to |W,X,+Z,| [the determinants in
ntiogon _ Egs.(Al) and(A2)]. This is due to the fact tha#,| =0 if A,
ij= 2 A Z 1~ B éixij, (A5)  has at least two identical rows. Applying Eé9) we obtain
for |D|
n n
n ad .
= = 16%=| [T Ay J| %ol + 2 Ixnm)l) (A10)
:;(BnH_BO(ﬁlXu- (AB) =1 i1=1

Note that all rows ofY,, are identical, which is also the case
for Z,,.

5=

11 ¢|) ( Wel + 3 |<vv><>n<i1>|). (A1)

We define the matriA,(k,l) as the one that is obtained Egs.(48) and(49) are now readily computed by substituting

by replacing rowsk andl in A, with the corresponding rows n+1

of matrix B,,. For example, matrixA,(1,2) is identical to |xn(i1)|:( > —)(~Bn+1—~Bi )i, (A12)
matrix B(3,4). From|Ay+ Byl =S y(ayc+bu)|(Aydn 1 =LA s

+ (B1) 1| it can be shown by induction thia,+ B,| may n 1 . ~

be calculated as [(WX)(iq)|= I]'_'[l )E_ Bni1—Bi)¢i, (AL3)

|A,+B,=|A,+|B, for n=1 (A7)  into Egs.(A10) and(A11).
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